Test Catalog

Test Id : TCP

T-Cell Subsets, Naive, Memory, and Activated, Blood

Useful For
Suggests clinical disorders or settings where the test may be helpful

Determining the presence of naive, memory, and activated T cells in various clinical contexts including autoimmune diseases, immunodeficiency states, T-cell recovery post-hematopoietic stem cell transplant, DiGeorge syndrome, and as a measure for T-cell immune competence

 

Naive T-cells results can be used as a surrogate marker for thymic-derived T-cell reconstitution, when used in conjunction with assessment of T-cell receptor excision circles (TRECS / T-Cell Receptor Excision Circles Analysis, Blood)

 

Assessing a patient's relative risk for infections

 

Evaluating patients with cellular or combined primary immunodeficiencies

 

Evaluating T-cell reconstitution after hematopoietic stem cell transplant, chemotherapy, biological therapy, immunosuppression, or immunomodulator therapy

 

Evaluating patients with autoimmune diseases

 

Evaluating patients who are HIV-positive for naive and memory subsets

 

Evaluating T-cell immune competence (presence of memory and activated T cells) in patients with recurrent infections

Method Name
A short description of the method used to perform the test

Flow Cytometry

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

No

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

T Cell Phenotyping, Advanced

Aliases
Lists additional common names for a test, as an aid in searching

Activated T cells

CD27+ T cells

CD28+ T cells

CD4+ T cells

CD45RA

CD45RO

CD62L+ T cells

CD8+ T cells

Central memory T cells

DiGeorge syndrome T cells

Effector memory T cells

HIV T cells

Immune competence T cells

Immune reconstitution T cells

Infection T cells

Intestinal lymphangiectasia T cells

Memory

MHC class II-positive T cells

Naive

T-cell depletion T cells

Specimen Type
Describes the specimen type validated for testing

Whole Blood EDTA

Ordering Guidance

This assay provides quantitative information on various T-cell subsets in blood; it does not provide any information on the antigen-specific or otherwise functional state of the T cells.

 

To assess the overall functional state of T cells, order either LPMGF / Lymphocyte Proliferation to Mitogens, Blood or LPAGF / Lymphocyte Proliferation to Antigens, Blood (using Candida and tetanus antigens).

 

To assess cytomegalovirus (CMV)-specific immune competence, order CMVC8 / Cytomegalovirus (CMV) CD8 T-Cell Immune Competence, Quantitative Assessment by Flow Cytometry, Blood.

Shipping Instructions

Testing performed Monday through Friday. Specimens not received by 4 p.m. Central time on Fridays may be canceled.

 

Specimens arriving on the weekend and observed holidays may be canceled.

 

Collect and package specimen as close to shipping time as possible.

 

It is recommended that specimens arrive within 24 hours of collection.

Necessary Information

Ordering healthcare professional's name and phone number are required.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Container/Tube: Lavender top (EDTA)

Specimen Volume: 3 mL

Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.

Additional Information: For serial monitoring, it is recommended that specimens are collected at the same time of day.

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the testing laboratory. The minimum volume is sufficient for one attempt at testing.

1 mL

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

Gross hemolysis Reject
Gross lipemia Reject

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Whole Blood EDTA Ambient 72 hours PURPLE OR PINK TOP/EDTA

Useful For
Suggests clinical disorders or settings where the test may be helpful

Determining the presence of naive, memory, and activated T cells in various clinical contexts including autoimmune diseases, immunodeficiency states, T-cell recovery post-hematopoietic stem cell transplant, DiGeorge syndrome, and as a measure for T-cell immune competence

 

Naive T-cells results can be used as a surrogate marker for thymic-derived T-cell reconstitution, when used in conjunction with assessment of T-cell receptor excision circles (TRECS / T-Cell Receptor Excision Circles Analysis, Blood)

 

Assessing a patient's relative risk for infections

 

Evaluating patients with cellular or combined primary immunodeficiencies

 

Evaluating T-cell reconstitution after hematopoietic stem cell transplant, chemotherapy, biological therapy, immunosuppression, or immunomodulator therapy

 

Evaluating patients with autoimmune diseases

 

Evaluating patients who are HIV-positive for naive and memory subsets

 

Evaluating T-cell immune competence (presence of memory and activated T cells) in patients with recurrent infections

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

T cells, after completing development and initial differentiation in the thymus, enter the periphery as naive T cells. Naive T cells undergo further differentiation into effector and memory T cells in the peripheral lymphoid organs after recognizing specific antigenic peptides in the context of major histocompatibility (MHC) molecules, through the antigen-specific T-cell receptor. In addition to the cognate signal of the peptide-MHC complex interaction (the term cognate refers to 2 biological molecules that normally interact), T cells require additional costimulatory signals to complete T-cell activation. Naive T cells circulate continuously through the lymph nodes and, on recognition of specific antigen, undergo activation. Due to their antigen-inexperienced state, naive T cells require activation by more potent antigen-presenting cells, such as dendritic cells.

 

Naive T cells can survive in circulation for prolonged periods of time and are very important in contributing to T-cell repertoire diversity. They proliferate in response to interleukin-2 as a consequence of their response to antigen through recognition of peptide-MHC costimulation. These expanded antigen-specific T cells undergo further differentiation into effector cells. The differentiation of naive CD8 T cells into cytotoxic effectors capable of killing target T cells loaded with endogenous peptides on MHC class I molecules may require additional costimulatory signals from CD4 T cells. Naive CD4 T cells also differentiate into different effector subsets such as Th1, Th2, and Th17, which produce specific cytokines.(1)

 

T cells can be subdivided into naive and memory subsets based on the expression of cell-surface markers, such as CD45RA and CD45RO among others. It was initially thought that the presence of cell-surface CD45RA indicated the naive subset, while the presence of CD45RO indicated memory subsets. It has now been shown that multiple, rather than single, markers are required to distinguish these subsets.(2) Lanzavecchia and Sallusto proposed a model where naive T cells expressing CD45RA and CCR7 lose CD45RA expression on recognition of antigen.(3) The surface markers for identifying naive T-cell subsets include CD45RA, CD62L (L-selectin), and CD27.(4,5)

 

Memory T cells are antigen-experienced cells that are present in greater numbers than antigen-specific precursors and can respond more efficiently and rapidly to a specific antigen. Memory T cells can maintain their populations independent of antigen by homeostatic proliferation in response to cytokines. While there are subcategories of memory T cells based on effector function and cell surface and cytolytic molecule expression, the 2 main categories of memory T cells are central memory T cells (Tcm) and effector memory T cells (Tem).(1,6)

 

Tcm express the CD45RO molecule along with CD62L (L-selectin) and CCR7 and are present mainly in lymphoid tissue.(6,7) They can respond to antigens through rapid proliferation and expansion and differentiation into Tem. By themselves, Tcm are not directly effective in effector cytolytic function.

 

Unlike Tcm, Tem express only CD45RO (not CD62L and CCR7).(6) As the name suggests, Tem have remarkable effector function, though they do not proliferate well. Tem are present throughout the circulation in peripheral tissues providing immune surveillance.

 

Memory T cells are particularly important for maintenance of immune competence since they are associated with a rapid and effective response to pathogens. Therefore, depletion of this compartment has more immediate significance than the depletion of naive T cells.

 

Activation of human T cells is critical for the optimal and appropriate performance of T-cell functions within the adaptive immune response. Activated naive T cells undergo proliferation, as well as subsequent differentiation into effector T cells, and are capable of producing cytokines that can modulate the immune response in a variety of ways.(8) There are several markers associated with T-cell activation, but those most commonly used include CD25 (IL-25R)(8) and MHC class II.(9) Additionally, the expression of the costimulatory molecule CD28 augments the T-cell activation response.(10)

 

The absolute counts of lymphocyte subsets are known to be influenced by a variety of biological factors, including hormones, the environment, and temperature. The studies on diurnal (circadian) variation in lymphocyte counts have demonstrated progressive increase in CD4 T-cell count throughout the day, while CD8 T cells and CD19+ B cells increase between 8:30 a.m. and noon, with no change between noon and afternoon. Natural killer cell counts, on the other hand, are constant throughout the day.(11) Circadian variations in circulating T-cell counts have been shown to be negatively correlated with plasma cortisol concentration.(12-14) In fact, cortisol and catecholamine concentrations control distribution and, therefore, numbers of naive versus effector CD4 and CD8 T cells.(11) It is generally accepted that lower CD4 T-cell counts are seen in the morning compared with the evening,(15) and during summer compared to winter.(16) These data therefore indicate that timing and consistency in the timing of blood collection are critical when serially monitoring patients for lymphocyte subsets.

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

The appropriate age-related reference values will be provided on the report.

Interpretation
Provides information to assist in interpretation of the test results

Absence or reduction of naive T cells with or without T-cell lymphopenia indicates absent or impaired T-cell reconstitution or thymic output. Reduction in activated T cells can also indicate a reduced T-cell immune competent state.

 

Increases in naive T cells with corresponding decreases in the memory T-cell compartment indicates a failure of further differentiation and effector function or selective loss of memory T cells and an increased risk for infection.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Timing and consistency in timing of blood collection are critical when serially monitoring patients for lymphocyte subsets. See Clinical Information.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8(4):345-350

2. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M. 11-color, 13-parameter flow cytometry: identification of human naive T-cells by phenotype, function, and T-cell receptor diversity. Nat Med. 2001;7(2):245-248

3. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T-lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708-712

4. Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Buck D, Terstappen LW. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T-cells during the virgin to memory cell transition. J Immunol. 1993;150(3):1105-1121

5. Morimoto C, Schlossman SF. P. Rambotti lecture. Human naive and memory T-cells revisited: New markers (CD31 and CD27) that help define CD4+ T-cell subsets. Clin Exp Rheumatol. 1993;11(3):241-247

6. LaRosa DF, Orange JS. Lymphocytes. J Allergy Clin Immunol. 2008;121(2 Suppl):S364-369

7. Foster AE, Marangolo M, Sartor MM, et al. Human CD62L-memory T-cells are less responsive to alloantigen stimulation than CD62L+ naive T-cells: potential for adoptive immunotherapy and allodepletion. Blood. 2004;104(8):2403-2409

8. Brenchley JM, Douek DC, Ambrozal DR, Chatterji M, Betts MR, Davis LS, Koup RA. Expansion of activated human naive T-cells preceded effector function. Clin Exp Immunol. 2002;130(3):431-440

9. Holling TM, van der Stoep N, Quinten E, van den Elsen PJ. Activated human T-cells accomplish MHC class II expression through T-cell specific occupation of class II transactivator promoter III. J Immunol. 2002;168(2):763-770

10. Thompson CB, Lindsten T, Ledbetter JA, et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA. 1989;86(4):1333-1337

11. Carmichael KF, Abayomi A. Analysis of diurnal variation of lymphocyte subsets in healthy subjects and its implication in HIV monitoring and treatment. 15th Intl Conference on AIDS, Bangkok, Thailand, 2004, Abstract B11052

12. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T: Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21):5134-5143

13. Dimitrov S, Lange T, Nohroudi K, Born J. Number and function of circulating antigen presenting cells regulated by sleep. Sleep. 2007;30(4):401-411

14. Kronfol Z, Nair M, Zhang Q, Hill EE, Brown MB. Circadian immune measures in healthy volunteers: relationship to hypothalamic-pituitary-adrenal axis hormones and sympathetic neurotransmitters. Psychosom Med. 1997;59(1):42-50

15. Malone JL, Simms TE, Gray GC, Wagner KF, Burge JR, Burke DS. Sources of variability in repeated T-helper lymphocyte counts from HIV 1-infected patients: total lymphocyte count fluctuations and diurnal cycle are important. J Acquir Immune Defic Syndr (1988). 1990;3:144-151

16. Paglieroni TG, Holland PV. Circannual variation in lymphocyte subsets, revisited. Transfusion. 1994;34(6):512-516

17. Delmonte OM, Fleisher TA. Flow cytometry: Surface markers and beyond. J Allergy Clin Immunol. 2019;143(2):528-537

18. Knight V, Heimall JR, Chong H, et al. A toolkit and framework for optimal laboratory evaluation of individuals with suspected primary immunodeficiency. J Allergy Clin Immunol Pract. 2021;9(9):3293-3307.e6

Method Description
Describes how the test is performed and provides a method-specific reference

This flow cytometric assay quantitates the following CD4 and CD8 T-cell subsets: naive (global and CD62L+), memory (global, central, and effector memory), and activated (CD4+25+ and major histocompatibility [MHC] class II-positive) T cells. EDTA-anticoagulated blood is incubated with antibodies to various T-cell markers (ie, CD3, CD4, CD8, CD45RO, CD45RA, HLA-DR, CD27, CD62L, CD25, and CD28). After red blood cell lysis, the sample is washed to remove any unbound antibodies. Each T-cell subset is expressed as a percentage of total CD4+ or CD8 T cells. Only the CD3 T cells are expressed as a percentage of total lymphocytes. The absolute counts for the T-cell subsets are derived from flow cytometry analysis of whole blood using monoclonal antibodies to identify CD45, CD3, CD4, and CD8. The T-cell subsets panel is linked to the TCD4 test (TCD4 / CD4 Count for Immune Monitoring, Blood) within the experiment and, therefore, the CD3, CD4, and CD8 T-cell reference ranges are provided within the TCD4 assay. The results for the other T-cell subsets are interpreted using a reference range derived from data of normal healthy adult and pediatric donors. Isotype controls are used in each assay to measure background fluorescence of the samples. A normal, healthy control is also included in each experiment to ensure the optimal performance of the assay.(Unpublished Mayo information)

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Monday through Friday

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

3 to 4 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

4 days

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed using an analyte specific reagent. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

86356 x 7

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
TCP T Cell Phenotyping, Advanced 96493-2
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
29178 Interpretation 69052-9
29174 Activated CD4 T cells (4+CD25+) 26982-9
29165 CD4+CD62L+CD27+ naive T cells 89331-3
29169 CD4+CD62L+CD27+CD45RO+ (Tcm) 89329-7
29170 CD4+CD62L-CD27-CD45RO+ (Tem) 89328-9
29167 CD8+CD62L+CD27+naive T cells 89330-5
29172 CD8+CD62L+CD27+CD45RO+ (Tcm) 96492-4
29173 CD8+CD62L-CD27- CD45RO+ (Tem) 89327-1
29175 CD4+HLA DR+CD28+ T cells 89326-3
29176 CD8+HLA DR+CD28+ T cells 89325-5
29161 %Activated CD4 T cells (4+CD25+) 89431-1
29152 %CD4+CD62L+CD27+ naive T cells 89340-4
29156 %CD4+CD62L+CD27+CD45RO+ (Tcm) 89338-8
29157 %CD4+CD62L-CD27-CD45RO+ (Tem) 89337-0
29154 %CD8+CD62L+CD27+naive T cells 89339-6
29159 %CD8+CD62L+CD27+CD45RO+ (Tcm) 89335-4
29160 %CD8+CD62L-CD27-CD45RO+ (Tem) 89334-7
29162 %CD4+HLA DR+CD28+ T cells 89333-9
29163 %CD8+HLA DR+CD28+ T cells 89332-1
29151 %CD4+CD45RA+ naive T cells 89360-2
29153 %CD8+CD45RA+ naive T cells 82744-4
29155 %CD4+CD45RO+ memory T cells 89362-8
29158 %CD8+CD45RO+ memory T cells 89336-2
29164 CD4+CD45RA+ naive T cells 26759-1
29166 CD8+CD45RA+ naive T cells 82743-6
29168 CD4+CD45RO+ memory T cells 85792-0
29171 CD8+CD45RO+ memory T cells 85790-4
609282 CD4 (T Cells) 24467-3
609283 CD8 (T Cells) 14135-8

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports

Test Update Resources

Change Type Effective Date
Test Status - Test Resumed 2024-03-13
Test Status - Test Down 2024-03-06