Differentiating between disorders of peroxisomal biogenesis (eg, Zellweger syndrome) and disorders with loss of a single peroxisomal function
Detecting abnormal elevations of pipecolic acid in serum
In the newborn period, pipecolic acid levels are more likely to be abnormal in urine than in plasma or serum. Abnormal levels of pipecolic acid should be interpreted together with the results of other biochemical markers of peroxisomal disorders, such as plasma C22-C26 very long-chain fatty acids, phytanic acid, pristanic acid, red blood cell plasmalogens, and bile acid intermediates.
Measurement of pipecolic acid is a useful diagnostic tool for differentiating between peroxisomal biogenesis disorders (Zellweger spectrum disorders) and peroxisomal disorders caused by single enzyme deficiencies, such as X-linked adrenoleukodystrophy.
Results must be interpreted together with the results of other biochemical markers for peroxisomal disorders.
Both urine and plasma are suitable specimens for the detection of pipecolic acid.
For more information see Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm
Gas Chromatography Mass Spectrometry (GC-MS)
For more information see Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm
Serum
Patient's age is required.
Patient Preparation: Fasting 12 hours or more. (Collect specimens from infants and small children just before next feeding)
Supplies: Sarstedt Aliquot Tube, 5 mL (T914)
Collection Container/Tube:
Preferred: Serum gel
Acceptable: Red top
Submission Container/Tube: Plastic vial
Specimen Volume: 1.5 mL
Collection Instructions: Centrifuge and aliquot serum into plastic vial.
If not ordering electronically, complete, print, and send a Biochemical Genetics Test Request (T798) with the specimen.
1 mL
Gross hemolysis | OK |
Gross lipemia | OK |
Gross icterus | OK |
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Serum | Frozen (preferred) | 94 days | |
Refrigerated | 14 days |
Differentiating between disorders of peroxisomal biogenesis (eg, Zellweger syndrome) and disorders with loss of a single peroxisomal function
Detecting abnormal elevations of pipecolic acid in serum
In the newborn period, pipecolic acid levels are more likely to be abnormal in urine than in plasma or serum. Abnormal levels of pipecolic acid should be interpreted together with the results of other biochemical markers of peroxisomal disorders, such as plasma C22-C26 very long-chain fatty acids, phytanic acid, pristanic acid, red blood cell plasmalogens, and bile acid intermediates.
For more information see Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm
Pipecolic acid (PA) is an intermediate of lysine metabolism and is oxidized in the peroxisomes by the enzyme L-pipecolate oxidase. In peroxisome biogenesis disorders (eg, Zellweger syndrome), the activity of this enzyme is lost, resulting in an increase in pipecolic acid levels. In contrast, in peroxisomal disorders involving single enzyme deficiencies such as D-bifunctional protein deficiency, PA is not elevated; therefore, PA analysis is useful for differentiating between these 2 groups of disorders.
Increased pipecolic acid levels may also be seen in alpha-aminoadipic semialdehyde dehydrogenase deficiency (pyridoxine-dependent epilepsy), hyperlysinemia types 1 and 2, and defects in proline metabolism.
Theoretically, a defect in L-pipecolate oxidase can exist, and several cases of hyperpipecolic acidemia have been reported, but a specific enzyme deficiency has not been described in any of the patients.
<6 months: < or =6.0 nmol/mL
6 months-<1 year: < or =5.9 nmol/mL
1-17 years: < or =4.3 nmol/mL
> or =18 years: < or =7.4 nmol/mL
Elevated pipecolic acid levels are seen in disorders of peroxisomal biogenesis; normal levels are seen in disorders with loss of a single peroxisomal function.
Abnormal levels of pipecolic acid should be interpreted together with the results of other biochemical markers of peroxisomal disorders, such as plasma C22-C26 very long-chain fatty acids, phytanic acid, and pristanic acid (POX / Fatty Acid Profile, Peroxisomal [C22-C26], Serum); red blood cell plasmalogens (PGRBC / Plasmalogens, Blood); and bile acid intermediates (BAIPD / Bile Acids for Peroxisomal Disorders, Serum).
Newborns with disorders of peroxisomal biogenesis often have normal levels of pipecolic acid that increase with age.
Abnormal results may reflect either prematurity or nongenetic liver or kidney disease.
Vigabatrin interferes with pipecolic acid determination.
Methylmalonic acid interferes with pipecolic acid determination.
1. Gartner J, Rosewich H, Thoms S. The peroxisome biogenesis disorders. In: Valle D, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Medical; 2019. Accessed November 02, 2023. Available at https://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=22554226
2. Wanders RJA, Barth PG, Heymans HAS. Single peroxisomal enzyme deficiencies. In: Valle D, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Medical; 2019. Accessed November 02, 2023. Available at https://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=225542524
3. Peduto A, Baumgartner MR, Verhoeven NM, et al. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab. 2004;82(3):224-230
4. Braverman N, Raymond G, Rizzo WB, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016;117(3):313-321
Pipecolic acid is quantitated by a stable isotope dilution method; electron capture negative chemical ionization gas chromatography mass spectrophotometry of pentafluorobenzyl esters.(Kok RM, Kaster L, de Jong AP, et al. Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine and amniotic fluid using electron capture negative ion mass fragmentography. Clin Chim Acta. 1987;168:143-152, Kuhara t, Akiyama T, Ohse M, et al. Identification of new biomarkers of pyridoxine-dependent epilepsy by GC/MS-based urine metabolomics. Anal Biochem. 2020;604:113739. doi:10.1016/j.ab.2020.113739)
Tuesday
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.
82542
Test Id | Test Order Name | Order LOINC Value |
---|---|---|
PIPA | Pipecolic Acid, S | 32334-5 |
Result Id | Test Result Name |
Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
|
---|---|---|
81326 | Pipecolic Acid, S | 32334-5 |
29964 | Reviewed By | 18771-6 |
29962 | Interpretation | 59462-2 |
Change Type | Effective Date |
---|---|
Test Changes - Specimen Information | 2023-12-19 |