

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

Overview

Useful For

Confirming the diagnosis or carrier variant status of genes associated with congenital dyserythropoietic anemia

Identifying variants within genes associated with phenotypic severity, allowing for predictive testing and further genetic counseling

Genetics Test Information

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 6 genes associated with congenital dyserythropoietic anemia: CDAN1, CDIN1 (C15orf41), GATA1, KIF23, KLF1, and SEC23B. See Method Description for additional details.

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, recurrence risk assessment, familial screening, and genetic counseling for congenital dyserythropoietic anemia.

Special Instructions

- Informed Consent for Genetic Testing
- Metabolic Hematology Next-Generation Sequencing (NGS) Patient Information
- Informed Consent for Genetic Testing (Spanish)
- Hereditary Hemolytic Anemia Gene Panel and Subpanel Comparison
- Targeted Genes and Methodology Details for Congenital Dyserythropoietic Anemia Gene Panel

Highlights

This profile evaluates for hereditary (congenital) causes of dyserythropoietic anemia. Symptoms should be long-standing or familial in nature.

Method Name

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available

Yes

Specimen

Specimen Type

Varies

Ordering Guidance

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

Multiple hematology gene panels are available. For more information, see <u>Hereditary Hemolytic Anemia Gene Panel and Subpanel Comparison</u>.

Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Necessary Information

- 1. <u>Metabolic Hematology Next-Generation Sequencing (NGS) Patient Information</u> is strongly recommended but not required. Testing may proceed without the patient information; however, it aids in providing a more thorough interpretation. Ordering healthcare professionals are strongly encouraged to complete the form and send it with the specimen
- 2.If form not provided, include the following information with the test request: clinical diagnosis, pertinent clinical history (ie, complete blood cell count results and relevant clinical notes) and differentials based on any previous bone marrow studies, clinical or morphologic presentation.

Specimen Required

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. For information about testing patients who have received a bone marrow transplant, call 800-533-1710.

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA)
Acceptable: Yellow top (ACD)
Specimen Volume: 3 mL
Collection Instructions:

- 1. Invert several times to mix blood.
- 2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerate 4 days

Additional Information: To ensure minimum volume and concentration of DNA are met, the requested volume must be submitted. Testing may be canceled if DNA requirements are inadequate.

Forms

- **1. New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available:
- -Informed Consent for Genetic Testing (T576)
- -Informed Consent for Genetic Testing (Spanish) (T826)
- 2. Metabolic Hematology Next-Generation Sequencing (NGS) Patient Information (T816)
- 3. If not ordering electronically, complete, print, and send a Benign Hematology Test Request (T755) with the specimen.

Specimen Minimum Volume

1 mL

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

Specimen Stability Information

Specimen Type	Temperature	Time	Special Container
Varies	Varies		

Clinical & Interpretive

Clinical Information

Next-generation sequencing is a methodology that can interrogate large regions of genomic DNA in a single assay. The presence and pattern of gene variants can provide critical diagnostic, prognostic, and therapeutic information for managing physicians.

This panel aids in the diagnosis and genetic counseling of individuals with clinical or familial features of congenital dyserythropoietic anemia (CDA). CDA is a disorder of ineffective erythropoiesis clinically subdivided into subtypes with various phenotypic findings that segregate into different gene associations.(1-6) These disorders have distinctive cytopathologic findings consisting of nuclear abnormalities in bone marrow erythroid precursors. Types I and II CDA are inherited in an autosomal recessive pattern, whereas types III and IV are autosomal dominant.

Reference Values

An interpretive report will be provided.

Interpretation

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations. (7) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions

Clinical Correlations:

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

considered.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances, single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

Genes may be added or removed based on updated clinical relevance. For detailed information regarding gene-specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants:

Currently, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare professionals to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time. Due to broadening genetic knowledge, it is possible that the laboratory may discover new information of relevance to the patient. Should that occur, the laboratory may issue an amended report.

Variant Evaluation:

Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline. (7) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference

- 1. Orkin SH, Nathan DG, Ginsburg D, et al, eds. Nathan and Oski's Hematology of Infancy and Childhood. 7th ed. Saunders Elsevier; 2009:360-364
- 2. Iolascon A, Andolfo I, Russo R. Congenital dyserythropoietic anemias. Blood. 2020;136(11):1274-1283. doi:10.1182/blood.2019000948
- 3. Kamiya T, Manabe A. Congenital dyserythropoietic anemia. Int J Hematol. 2010;92(3):432-348. doi:10.1007/s12185-010-0667-9
- 4. Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122(13):2162-2166
- 5. Arnaud L, Saison C, Helias V, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721-727
- 6. Iolascon A, Andolfo I, Barcellini W, et al. Recommendations for splenectomy in hereditary hemolytic anemias. Haematologica. 2017;102(8):1304-1313. doi:10.3324/haematol.2016.161166
- 7. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424

Performance

Method Description

Next-generation sequencing (NGS) and/or Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. (Unpublished Mayo method)

See <u>Targeted Genes and Methodology Details for Congenital Dyserythropoietic Anemia Gene Panel</u> for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.

Reference transcript numbers may be updated due to transcript re-versioning. Always refer to the final patient report for gene transcript information referenced at the time of testing. Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

Genes analyzed: CDAN1, CDIN1 (C15orf41), GATA1, KIF23, KLF1, and SEC23B

PDF Report

Supplemental

Day(s) Performed

Varies

Report Available

28 to 42 days

Specimen Retention Time

Whole blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory Location

Mayo Clinic Laboratories - Rochester Main Campus

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact <u>Customer Service</u> 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact <u>Customer Service</u>.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

81479

LOINC® Information

Test ID	Test Order Name	Order LOINC® Value
NCDA	CDA Sequencing, NGS	103734-0

Result ID	Test Result Name	Result LOINC® Value
619076	Test Description	62364-5
619077	Specimen	31208-2
619078	Source	31208-2
619079	Result Summary	50397-9
619080	Result	82939-0

Congenital Dyserythropoietic Anemia Gene Panel, Next-Generation Sequencing, Varies

i—————————————————————————————————————		
619081	Interpretation	69047-9
619082	Additional Results	82939-0
619083	Resources	99622-3
619084	Additional Information	48767-8
619085	Method	85069-3
619086	Genes Analyzed	82939-0
619087	Disclaimer	62364-5
619088	Released By	18771-6