

Congenital Heart Disease Gene Panel, Varies

Overview

Useful For

Providing a genetic evaluation for patients with a personal or family history of congenital heart disease

Establishing a diagnosis of a genetic condition associated with congenital heart disease

Reflex Tests

Test Id	Reporting Name	Available Separately	Always Performed
CULFB	Fibroblast Culture for	Yes	No
	Genetic Test		
CULAF	Amniotic Fluid	Yes	No
	Culture/Genetic Test		
MATCC	Maternal Cell	Yes	No
	Contamination, B		
_STR1	Comp Analysis using STR	No, (Bill only)	No
	(Bill only)		
_STR2	Add'l comp analysis w/STR	No, (Bill only)	No
	(Bill Only)		

Genetics Test Information

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 44 genes associated with isolated and syndromic congenital heart disease: *ACTB, ACTG1, BRAF, CBL, CHD7, CITED2, ELN, FOXF1, FOXH1, GATA4, GATA5, GATA6, GDF1, HRAS, JAG1, KRAS, LZTR1, MAP2K1, MAP2K2, MRAS, MYH11, NKX2-5, NKX2-6, NODAL, NOTCH1, NOTCH2, NR2F2, NRAS, PLD1, PPP1CB, PTPN11, RAF1, RIT1, RRAS2, SHOC2, SMAD6, SOS1, SOS2, TAB2, TBX1, TBX20, TBX5, TFAP2B,* and *ZIC3*. See <u>Targeted Genes and Methodology Details for Congenital Heart Disease Gene</u> <u>Panel</u> and Method Description for additional details.

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for congenital heart disease.

Prior Authorization is available for this assay.

Testing Algorithm

For prenatal specimens only:

-If amniotic fluid (nonconfluent cultured cells) is received, amniotic fluid culture will be added at an additional charge. -If chorionic villus specimen (nonconfluent cultured cells) is received, fibroblast culture will be added at an additional charge.

For any prenatal specimen that is received, maternal cell contamination testing will be performed at an additional charge.

Special Instructions

Congenital Heart Disease Gene Panel, Varies

- Informed Consent for Genetic Testing
- Informed Consent for Genetic Testing (Spanish)
- <u>Congenital Heart Disease Genetic Testing Patient Information</u>
- Targeted Genes and Methodology Details for Congenital Heart Disease Gene Panel
- Congenital Heart Disease Gene Panel (CHDGG) Prior Authorization Ordering Instructions

Method Name

Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available

Yes

Specimen

Specimen Type

Varies

Ordering Guidance

Chromosomal microarray is often used as a first-tier test in the setting of congenital heart disease. If chromosomal microarray testing is desired, order either CMACB / Chromosomal Microarray, Congenital, Blood or CMAP / Chromosomal Microarray, Prenatal, Amniotic Fluid/Chorionic Villus Sampling.

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Additional Testing Requirements

All prenatal specimens must be accompanied by a maternal blood specimen; order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen as this must be a different order number than the prenatal specimen.

Shipping Instructions

Specimen preferred to arrive within 96 hours of collection.

Necessary Information

<u>Prior Authorization</u> is available, **but not required**, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.

Specimen Required

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. For

Congenital Heart Disease Gene Panel, Varies

instructions for testing patients who have received a bone marrow transplant, call 800-533-1710.

Submit only 1 of the following specimens:

Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:

Invert several times to mix blood.
Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred)/Refrigerated

Due to its complexity, consultation with the laboratory is required for all prenatal testing; call 800-533-1710 to speak to a genetic counselor.

Specimen Type: Amniotic fluid Container/Tube: Amniotic fluid container Specimen Volume: 20 mL Specimen Stability Information: Refrigerated (preferred)/Ambient Additional information: 1. If amniotic fluid or nonconfluent cultures are received, CULAF / Culture for Genetic Testing, Amniotic Fluid will be added at an additional charge. 2. All prenatal specimens must be accompanied by a maternal blood specimen; order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen. Specimen Type: Chorionic villi Container/Tube: 15-mL tube containing 15 mL of transport media Specimen Volume: 20 mg Specimen Stability Information: Refrigerated **Additional Information:** 1. If nonconfluent cultures are received, CULFB / Fibroblast Culture for Biochemical or Molecular Testing will be added at an additional charge. 2. All prenatal specimens must be accompanied by a maternal blood specimen; order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen. Acceptable: Specimen Type: Confluent cultured cells Container/Tube: T-25 flask Specimen Volume: 2 Flasks **Collection Instructions:** Submit confluent cultured cells from another laboratory. Specimen Stability Information: Ambient (preferred)/Refrigerated Additional Information: All prenatal specimens must be accompanied by a maternal blood specimen; order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Congenital Heart Disease Gene Panel, Varies

Forms

1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

- 2. Congenital Heart Disease Genetic Testing Patient Information
- 3. Congenital Heart Disease Gene Panel (CHDGG) Prior Authorization Ordering Instructions
- 4. If not ordering electronically, complete, print, and send a <u>Cardiovascular Test Request</u> (T724) with the specimen.

Specimen Minimum Volume

Blood: 1 mL; Other specimen types: See Specimen Required

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability

Specimen Stability Information

Specimen Type	Temperature	Time	Special Container
Varies	Varies		

Clinical & Interpretive

Clinical Information

Congenital heart disease/defects (CHD/CHD) is a general term used to describe one or more problems with the heart's structure that exist at birth. CHD represent the most common birth defects in humans, with approximately 1% of births affected. CHD may involve one or more structures of the heart, including chambers, valves, arteries and veins, and may be isolated (nonsyndromic) or part of a systemic condition involving additional congenital anomalies (syndromic).

In the absence of an identifiable environmental or teratogenic cause, most CHD are considered multifactorial and do not have a genetic cause identified. However, it is estimated that a genetic etiology can be determined in around 20% to 30% of CHD cases, with increased likelihood of diagnostic findings in individuals with extracardiac anomalies and/or dysmorphic features. When an underlying genetic cause is detected, it is most often due to chromosomal copy-number variants, followed by aneuploidy, then single-gene variants.(1) For this reason, chromosomal microarray analysis is often used as the first-tier test for individuals with CHD, followed by single- or multi-gene panel analysis, depending on the cardiac lesion, presence or absence of extra-cardiac features, and family history.

This panel includes genes associated with both isolated CHD as well as syndromic conditions commonly involving CHD, such as Noonan syndrome and related disorders, CHARGE syndrome (coloboma, heart defects, atresia choanae [also known as choanal atresia], growth retardation, genital abnormalities, and ear abnormalities), Holt-Oram syndrome, and Alagille syndrome.

Confirmation of the genetic cause of CHD may inform further screening or surveillance strategies, as well as genetic counseling for the family.

Congenital Heart Disease Gene Panel, Varies

Reference Values

An interpretive report will be provided

Interpretation

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(2) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions

Clinical Correlations:

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

Genes may be added or removed based on updated clinical relevance. Refer to the <u>Targeted Genes and Methodology</u> <u>Details for Congenital Heart Disease Gene Panel</u> for the most up to date list of genes included in this test. For detailed

LABORATORIES

Test Definition: CHDGG

Congenital Heart Disease Gene Panel, Varies

information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants:

At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time.

Variant Evaluation:

Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline.(2) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. Incidental findings may include, but are not limited to, results related to the sex chromosomes. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference

1. Ison HE, Griffin EL, Parrott A, et al: Genetic counseling for congenital heart disease-Practice resource of the National Society of Genetic Counselors. J Genet Couns. 2022 Feb;31(1):9-33

2. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-424

Performance

Method Description

Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp

Congenital Heart Disease Gene Panel, Varies

and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See <u>Targeted Genes and Methodology Details for Congenital Heart Disease Gene Panel</u> for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)

Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

Genes analyzed: ACTB, ACTG1, BRAF, CBL, CHD7, CITED2, ELN, FOXF1, FOXH1, GATA4, GATA5, GATA6, GDF1, HRAS, JAG1, KRAS, LZTR1, MAP2K1, MAP2K2, MRAS, MYH11, NKX2-5, NKX2-6, NODAL, NOTCH1, NOTCH2, NR2F2, NRAS, PLD1, PPP1CB, PTPN11, RAF1, RIT1, RRAS2, SHOC2, SMAD6, SOS1, SOS2, TAB2, TBX1, TBX20, TBX5, TFAP2B, and ZIC3

PDF Report

Supplemental

Day(s) Performed

Varies

Report Available

28 to 42 days

Specimen Retention Time

Whole blood: 2 weeks (if available); Extracted DNA: 3 months; Cord blood, amniotic fluid, cultured amniocytes, chorionic villi, cultured chorionic villi: 1 month

Performing Laboratory Location

Mayo Clinic Laboratories - Rochester Main Campus

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

Congenital Heart Disease Gene Panel, Varies

81404
81405 x 3
81406 x 6
81407 x 3
81408
81479
81479 (if appropriate for government payers)
81265-Maternal cell contamination (if appropriate)
88233-Tissue culture, skin, solid tissue biopsy (if appropriate)
88235-Amniotic Fluid culture (if appropriate)
88240-Cryopreservation (if appropriate)

Prior Auhtorization

Insurance preauthorization is available for this testing; forms are available.

Patient financial assistance may be available to those who qualify. Patients who receive a bill from Mayo Clinic Laboratories will receive information on eligibility and how to apply.

LOINC[®] Information

Test ID	Test Order Name	Order LOINC [®] Value
CHDGG	Congenital Heart Disease Gene Panel	51966-0

Result ID	Test Result Name	Result LOINC [®] Value
617198	Test Description	62364-5
617199	Specimen	31208-2
617200	Source	31208-2
617201	Result Summary	50397-9
617202	Result	82939-0
617203	Interpretation	69047-9
617204	Additional Results	82939-0
617205	Resources	99622-3
617206	Additional Information	48767-8
617207	Method	85069-3
617208	Genes Analyzed	48018-6
617209	Disclaimer	62364-5
617210	Released By	18771-6