

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Overview

Useful For

Follow up for abnormal biochemical results suggestive of methylmalonic acidemia or propionic acidemia

Establishing a molecular diagnosis for patients with methylmalonic acidemia or propionic acidemia

Identifying variants within genes known to be associated with methylmalonic acidemia or propionic acidemia, allowing for predictive testing of at-risk family members

Reflex Tests

Test Id	Reporting Name	Available Separately	Always Performed
_STR1	Comp Analysis using STR	No, (Bill only)	No
	(Bill only)		
_STR2	Add'l comp analysis w/STR	No, (Bill only)	No
	(Bill Only)		
CULFB	Fibroblast Culture for	Yes	No
	Genetic Test		
CULAF	Amniotic Fluid	Yes	No
	Culture/Genetic Test		
MATCC	Maternal Cell	Yes	No
	Contamination, B		

Genetics Test Information

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 28 genes associated with methylmalonic aciduria-propionic aciduria: *ABCD4, ACSF3, ALDH6A1, AMN, CD320, CUBN, DMGDH, CBLIF, HCFC1, LMBRD1, MCEE, MMAA, MMAB, MMACHC, MMADHC, MTHFR, MTR, MTRR, MMUT, PCCA, PCCB, PRDX1, SUCLA2, SUCLG1, TCN1, TCN2, THAP11,* and *ZNF143*. See <u>Targeted Genes and Methodology Details for Methylmalonic Aciduria-Propionic Aciduria Combined Gene Panel</u> and Method Description for additional details.

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for methylmalonic aciduria and propionic aciduria.

This test is not recommended for detection of the benign *MTHFR* variants c.665C>T (p.C677T, p.Ala222Val) and c.1286A>C (A1298C, p.Glu429Ala) due to limited clinical utility.(1-4)

Testing Algorithm

Prenatal specimens only:

If an amniotic fluid specimen or cultured amniocytes are received, an amniotic fluid culture will be performed at an additional charge.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

If a chorionic villi specimen or cultured chorionic villi are received, a fibroblast culture will be performed at an additional charge.

For any prenatal specimen that is received, maternal cell contamination testing will be performed at an additional charge.

Skin biopsy or cultured fibroblast specimens:

For skin biopsy or cultured fibroblast specimens, a fibroblast culture will be performed at an additional charge.

Special Instructions

- Molecular Genetics: Biochemical Disorders Patient Information
- Informed Consent for Genetic Testing
- Blood Spot Collection Card-Spanish Instructions
- Blood Spot Collection Card-Chinese Instructions
- Informed Consent for Genetic Testing (Spanish)
- Blood Spot Collection Instructions
- Targeted Genes and Methodology Details for Methylmalonic Aciduria-Propionic Aciduria Combined Gene Panel

Method Name

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing.

NY State Available

Yes

Specimen

Specimen Type

Varies

Ordering Guidance

Additional recommended first-tier tests to screen for methylmalonic acidemia include plasma acylcarnitine profile (ACRN / Acylcarnitines, Quantitative, Plasma), quantitative plasma amino acids (AAQP / Amino Acids, Quantitative, Plasma), urine organic acids (OAU / Organic Acids Screen, Random, Urine), and homocysteine (HCYSP / Homocysteine, Total, Plasma or HCYSS / Homocysteine, Total, Serum).

Customization of this panel and single gene analysis for any gene present on this panel is available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Specimen Required

Patient Preparation: A previous hematopoietic stem cell transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a hematopoietic stem cell transplant.

Submit only 1 of the following specimens:

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Acceptable: Green top (Sodium heparin)

Specimen Volume: 3 mL **Collection Instructions**:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. **Do not aliquot**.

3. Whole blood collected postnatal from an umbilical cord is also acceptable. See Additional Information.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 4 days/Frozen 4 days

Additional Information:

- 1. Specimens are preferred to be received within 4 days of collection. Extraction will be attempted for specimens received after 4 days, and DNA yield will be evaluated to determine if testing may proceed.
- 2. To ensure minimum volume and concentration of DNA are met, the requested volume must be submitted. Testing may be canceled if DNA requirements are inadequate.
- 3. For postnatal umbilical cord whole blood specimens, maternal cell contamination studies are recommended to ensure test results reflect that of the patient tested. A maternal blood specimen is required to complete maternal cell contamination studies. Order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on both the cord blood and maternal blood specimens under separate order numbers.

Specimen Type: Saliva

Patient Preparation: Patient should not eat, drink, smoke, or chew gum 30 minutes prior to collection.

Supplies:

DNA Saliva Kit High Yield (T1007) Saliva Swab Collection Kit (T786)

Container/Tube:

Preferred: High-yield DNA saliva kit

Acceptable: Saliva swab

Specimen Volume: 1 Tube if using T1007 or 2 swabs if using T786 **Collection Instructions:** Collect and send specimen per kit instructions.

Specimen Stability Information: Ambient (preferred) 30 days/Refrigerated 30 days

Additional Information: Saliva specimens are acceptable but not recommended. Due to lower quantity/quality of DNA yielded from saliva, some aspects of the test may not perform as well as DNA extracted from a whole blood sample. When applicable, specific gene regions that were unable to be interrogated will be noted in the report. Alternatively, additional specimen may be required to complete testing.

Specimen Type: Blood spot

Supplies: Card-Blood Spot Collection (Filter Paper) (T493)

Container/Tube:

Preferred: Collection card (Whatman Protein Saver 903 Paper)

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Acceptable: PerkinElmer 226 filter paper or blood spot collection card

Specimen Volume: 2 to 5 Blood spots

Collection Instructions:

- 1. An alternative blood collection option for a patient older than 1 year is a fingerstick. For detailed instructions, see <u>How to Collect a Dried Blood Spot Sample</u>.
- 2. Let blood dry on the filter paper at ambient temperature in a horizontal position for a minimum of 3 hours.
- 3. Do not expose specimen to heat or direct sunlight..
- 4. Do not stack wet specimens.
- 5. Keep specimen dry.

Specimen Stability Information: Ambient (preferred)/Refrigerated

Additional Information:

- 1. Blood spot specimens are acceptable but not recommended. Multiple extractions will be required to obtain sufficient yield for supplemental analysis, and there is significant risk for test failure due to insufficient DNA.
- 2. Due to lower concentration of DNA yielded from blood spot, some aspects of the test may not perform as well as DNA extracted from a whole blood sample. When applicable, specific gene regions that were unable to be interrogated will be noted in the report. Alternatively, additional specimen may be required to complete testing.
- 3. For collection instructions, see <u>Blood Spot Collection Instructions</u>
- 4. For collection instructions in Spanish, see <u>Blood Spot Collection Card-Spanish Instructions</u> (T777)
- 5. For collection instructions in Chinese, see <u>Blood Spot Collection Card-Chinese Instructions</u> (T800)

Specimen Type: Cultured fibroblasts

Source: Skin

Container/Tube: T-25 flask Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy. Cultured cells from a prenatal

specimen will not be accepted.

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.

Specimen Type: Skin biopsy

Supplies: Fibroblast Biopsy Transport Media (T115)

Container/Tube: Sterile container with any standard cell culture media (eg, minimal essential media, RPMI 1640). The

solution should be supplemented with 1% penicillin and streptomycin.

Specimen Volume: 4-mm Punch

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Specimen Type: Extracted DNA

Container/Tube:

Preferred: Screw Cap Micro Tube, 2 mL with skirted conical base

Acceptable: Matrix tube, 1 mL

Collection Instructions:

1. The preferred volume is at least 100 mcL at a concentration of 75 ng/mcL.

2. Include concentration and volume on tube.

Specimen Stability Information: Frozen (preferred) 1 year/Ambient/Refrigerated

Additional Information: DNA must be extracted in a CLIA-certified laboratory or equivalent and must be extracted from a specimen type listed as acceptable for this test (including applicable anticoagulants). Our laboratory has experience with Chemagic, Puregene, Autopure, MagnaPure, and EZ1 extraction platforms and cannot guarantee that all extraction methods are compatible with this test. If testing fails, one repeat will be attempted, and if unsuccessful, the test will be reported as failed and a charge will be applied. If applicable, specific gene regions that were unable to be interrogated due to DNA quality will be noted in the report.

PRENATAL SPECIMENS

Due to its complexity, consultation with the laboratory is required for all prenatal testing; call 800-533-1710 to speak to a genetic counselor.

Specimen Type: Amniotic fluid

Container/Tube: Amniotic fluid container

Specimen Volume: 20 mL

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information: Specimen will only be tested after culture.

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULAF / Culture for Genetic Testing, Amniotic Fluid. An additional 2 to 3 weeks are required to culture amniotic fluid before genetic testing can occur.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Specimen Type: Prenatal cultured amniocytes This does not include cultured chorionic villi.

Container/Tube: T-25 flask Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured cells from another laboratory **Specimen Stability Information**: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Specimen Type: Chorionic villi

Container/Tube: 15-mL tube containing 15 mL of transport media

Specimen Volume: 20 mg

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information: Specimen will only be tested after culture.

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks are required to culture fibroblasts before genetic testing can occur.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Specimen Type: Cultured chorionic villi

Container/Tube: T-25 Flasks Specimen Volume: 2 Full flasks

Collection Instructions: Submit confluent cultured cells from another laboratory

Specimen Stability Information: Ambient (preferred) <24 hours/Refrigerated <24 hours

Additional Information:

- 1. Specimens are preferred to be received within 24 hours of collection. Culture and extraction will be attempted for specimens received after 24 hours and will be evaluated to determine if testing may proceed.
- 2. A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing.
- 3. **All prenatal specimens must be accompanied by a maternal blood specimen;** order MATCC / Maternal Cell Contamination, Molecular Analysis, Varies on the maternal specimen.

Forms

- 1. **New York Clients-Informed consent is required.** Document on the request form or electronic order that a copy is on file. The following documents are available:
- -Informed Consent for Genetic Testing (T576)
- -Informed Consent for Genetic Testing (Spanish) (T826)
- 2. Molecular Genetics: Biochemical Disorders Patient Information (T527)

Specimen Minimum Volume

See Specimen Required

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information

Specimen Type	Temperature	Time	Special Container
Varies	Varies		

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Clinical & Interpretive

Clinical Information

Methylmalonic acidemia (MMA) and propionic acidemia (PA) are defects of propionate metabolism caused by deficiencies in methylmalonyl-CoA mutase and propionyl-CoA carboxylase, respectively. The clinical phenotype includes vomiting, hypotonia, lethargy, apnea, hypothermia, and coma. The biochemical phenotype for MMA includes elevations of propionyl carnitine, methylmalonic acid, and methylcitric acid. Patients with PA will have elevations of propionyl carnitine and methylcitric acid with normal methylmalonic acid concentrations as the enzymatic defect is upstream of methylmalonic-CoA mutase. All known disorders of MMA and PA metabolism are inherited in an autosomal recessive manner.(5)

Newborn screening for inborn errors of propionic acid metabolism relies on elevations of methionine and propionyl carnitine, which are reported as an elevation of C3. These analytes are not specific for this condition and are prone to false-positive results, leading to increased cost, stress, and anxiety for families who are subjected to follow-up testing. Homocysteine, methylmalonic acid, and methylcitric acid are more specific markers for inborn errors of propionic acid metabolism (HCMM / Homocysteine [Total], Methylmalonic Acid, and Methylcitric Acid, Blood Spot).

For MMA, the preferred biochemical screening tests include plasma acylcarnitine profile (ACRN / Acylcarnitines, Quantitative, Plasma), quantitative plasma amino acids (AAQP / Amino Acids, Quantitative, Plasma), urine organic acids (OAU / Organic Acids Screen, Random, Urine), and homocysteine (HCYSP / Homocysteine, Total, Plasma or HCYSS / Homocysteine, Total, Serum).

Molecular genetic testing can be used to confirm a biochemical diagnosis for MMA or PA.

Treatment is most effective when tailored to the specific type of MMA or PA. For example, intramuscular injections of hydroxocobalamin are critical in the treatment of cobalamin C deficiency, whereas oral cyanocobalamin is effective for MMA mutase subtypes as well as other cobalamin subtypes. Acute treatment for MMA and PA is similar, consisting of dialysis and administration of nitrogen scavenger drugs to reduce ammonia concentration. Chronic management typically involves restriction of dietary protein with essential amino acid supplementation. More recently, liver transplantation has been used with success in treating some patients with MMA or PA.(5)

Reference Values

An interpretive report will be provided.

Interpretation

All detected alterations are evaluated according to American College of Medical Genetics and Genomics recommendations. (5) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions

Clinical Correlations:

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of at least one reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

Genes may be added or removed based on updated clinical relevance. For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent non-leukocyte reduced blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received an allogeneic hematopoietic stem cell transplant.

Reclassification of Variants:

Currently, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare professionals to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time. Due to broadening genetic knowledge, it is possible that the laboratory may discover new information of relevance to the patient. Should that occur, the laboratory may issue an amended report.

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

Variant Evaluation:

Evaluation and categorization of variants is performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline. Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference

- 1. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50-e103
- 2. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 197: Inherited Thrombophilias in Pregnancy [published correction appears in Obstet Gynecol. 2018;132(4):1069. doi:10.1097/AOG.0000000000002924]. Obstet Gynecol. 2018;132(1):e18-e34
- 3. Hickey SE, Curry CJ, Toriello HV. ACMG Practice Guideline: lack of evidence for MTHFR polymorphism testing. Genet Med. 2013;15(2):153-156
- 4. Levin BL, Varga E. MTHFR: Addressing Genetic Counseling Dilemmas Using Evidence-Based Literature. J Genet Couns. 2016;25(5):901-911
- 5. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424
- 6. Fenton WA, Gravel RA, Rosenblatt DS et al. Disorders of propionate and methylmalonate metabolism. In: Valle D, Antonarakis S, Ballabio A, Beaudet A, Mitchell GA, eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Education; 2019. Accessed March 8, 2024. Available at

http://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=225086103

Performance

Method Description

Next-generation sequencing (NGS) and Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated to be over 99% for single nucleotide

Methylmalonic Aciduria-Propionic Aciduria
Combined Gene Panel, Varies

variants, over 94% for deletions/insertions (delins) less than 40 base pairs (bp), and over 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Combined Gene Panel for details regarding the targeted genes analyzed and specific gene regions not routinely covered. (Unpublished Mayo method)

Genes analyzed: ABCD4, ACSF3, ALDH6A1, AMN, CD320, CUBN, DMGDH, CBLIF, HCFC1, LMBRD1, MCEE, MMAA, MMAB, MMACHC, MMADHC, MTHFR, MTR, MTRR, MMUT, PCCA, PCCB, PRDX1, SUCLA2, SUCLG1, TCN1, TCN2, THAP11, and ZNF143

PDF Report

Supplemental

Day(s) Performed

Varies

Report Available

21 to 28 days

Specimen Retention Time

Whole blood 28 days (if available); Saliva: 30 days (if available); Extracted DNA: 3 months; Blood spots: 1 year (if available)

Performing Laboratory Location

Mayo Clinic Laboratories - Rochester Main Campus

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact <u>Customer Service</u> 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact <u>Customer Service</u>.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

81443

Methylmalonic Aciduria-Propionic Aciduria Combined Gene Panel, Varies

88233-Tissue culture, skin, solid tissue biopsy (if appropriate) 88240-Cryopreservation (if appropriate)

LOINC® Information

Test ID	Test Order Name	Order LOINC® Value
MPAGP	MMA PA Combined Gene Panel	105348-7

Result ID	Test Result Name	Result LOINC® Value
608668	Test Description	62364-5
608669	Specimen	31208-2
608670	Source	31208-2
608671	Result Summary	50397-9
608672	Result	82939-0
608673	Interpretation	69047-9
608674	Resources	99622-3
608675	Additional Information	48767-8
608676	Method	85069-3
608677	Genes Analyzed	48018-6
608678	Disclaimer	62364-5
608679	Released By	18771-6